Sabtu, 06 Juni 2009

EFEK VALVE LIFT PADA EFISIENSI MESIN

Efisiensi mesin diukur dari seberapa efisien mesin mampu menahan panas, seberapa kemampuan mesin menghisap volume campuran udara-bahan bakar, seberapa efisien mesin mampu menggerakkan semua komponen dengan gesekan minimum, dan banyak nilai-nilai efisiensi kerja lainnya untuk peningkatan performa.

Geometri bentuk, ukuran, volume sebuah porting harus menjadi catatan harian utama bagi seorang engine tuner, hingga suatu saat nantinya menemukan sebuah bentuk porting yang pas bagi dirinya sendiri. Porting mesin pabrikan dibuat untuk kepuasan power pada putaran menengah, pemakaian bahan bakar yang ekonomis, kehandalan penggunaan mesin serta daya tahan untuk jangka waktu panjang selama dalam perawatan servis.

Performa ideal adalah usaha mendekati kesempurnaan mesin dalam menghasilkan tenaga sesuai dengan pemasukan dan bagaimana mesin mengolah bahan bakar tanpa kehilangan daya pada gesekan maupun koefisien lain. Jumlah Flow dalam mesin biasa diukur dengan satuan CFM, dan setiap ketinggian tertentu dari lift klep inlet akan menghasilkan rata-rata flow yang berbeda. Airflow yang meningkat menandakan perbaikan potensi tenaga yang sebenarnya mampu dihasilkan mesin. Panjang porting dan ukuran klep juga sangat mempengaruhi Flow. Payung klep dengan diameter relatif besar, batang klep kecil, cenderung berpotensi menghasilkan flow lebih baik dibandingkan klep dengan diameter payung kecil dan batang klep lebar, disamping hal ini akan menghasilkan gesekan yang lebih besar pula dikarenakan berat massa material klep itu sendiri serta beban dinamis bagi spring valve. Namun perlu diingat, ukuran diameter klep terbatas oleh luasan permukaan piston, piston kecil akan menghalangi klep besar untuk menghasilkan flow terbaik dikarenakan ada sisi yang terhalang.

Mungkin flow ideal tidak akan dapat tercapai namun hal ini menjadi semangat untuk menemukan bentuk porting yang paling efisien. Titik penting dari sebuah porting adalah dibawah seating klep, di samping area bos klep dimana banyak flow tertahan disana. Sudut seating klep yang membulat akan mampu membantu mengurangi kehilangan air flow. Area disekitaran payung klep pada ruang bakar harus dibuat serendah mungkin agar tidak menghalangi aliran udara yang akan menyebar ke dalam silinder, karena aliran udara harus berbelok 90 derajat untuk dapat keluar dari area port dan menembus klep.
Area penting pada porting

Area penting pada porting

Source of flow loss (%) Persentasi Kehilangan Flow

1. Gesekan di dinding port 4 %
2. Tegangan aliran di perut port 2 %
3. Lekukan di dekat bos klep 11 %
4. Sisi tersembunyi dibalik bos klep 4 %
5. Lekukan untuk keluar 12 %
6. Seating 25derajat 19 %
7. Seating 30 degrees 17 %
8. Ekspansi disekitar klep 31 %

Total 100 %

Pada jalur pemasukan cylinder head 4-Tak, bentuk porting ideal menurut mesin Flowbench adalah yang membulat tanpa hambatan untuk sanggup menggiring udara jatuh dengan sudut kelokan radius yang lembut melewati klep. Pada percobaan tersebut intake valve lift terbuka 10.6 mm, lebih dari ukuran standard yang membuka 7.0 mm. Maximum exhaust lift dicoba 9.71mm dari standardnya 7.0mm. Air flow di mesin sepenuhnya dikontrol oleh valve lift. Semakin jauh klep mampu dibuka, semakin besar Flow meningkat. Ketika klep terangkat 15 % dari lebar diameter payungnya maka flow dikontrol sepenuhnya oleh klep dan sudut seating klep. Saat klep terangkat tinggi, Flow akan memuncak dan akhirnya mencapai batas maksimum volume porting. Apapun di sekitaran klep yang menghalangi saat dia terangkat akan memberi hambatan berarti bagi flow. Jika volume porting mampu mengisi silinder saat klep terangkat jauh maka bukan tidak mungkin sebuah camshaft didesain untuk mengangkat klep bahkan hingga 37 % dari diameter klep. Tujuan semua ini adalah untuk membuat klep terbuka secepat mungkin dan bertahan lama di angkatan rendah dengan stabil, ini berguna untuk menambah suplai head flow. Extra flow diperoleh dari durasi pada area Flanks pada camshaft bukan pada Puncak Lift.
Downdraught Porting

Downdraught Porting

Eksperiment menunjukkan maksimum flow justru terjadi pada angkatan klep setinggi 27 % dari diameter klep, karena kemampuan porting untuk melepaskan udara juga terbatas, jadi seberapa lama kita mampu menjaga klep terbuka di area itulah yang mampu meningkatkan potensial airflow untuk menghasilkan tenaga. Puncak lift yang tinggi membantu untuk memberi gelombang kejut aliran udara ke dalam silinder sehingga membentuk pulsa untuk hisapan selanjutnya. Saluran hisap lebih penting diperhatikan sebagaimana ruang bakar. Area pada radius 45 derajat dari klep saat berada di maximum lift harus terbebas dari halangan sejauh 65 % dari maximum lift. Area ini adalah area ekspansi pelepasan udara dari dalam porting menyusup keluar dari payung klep gelombang kompresi negatif menjadi tidak efektif apabila air flow masih terhalang dinding di sekitar klep.

diposting oleh ariefdanisa @ 00.55   0 Komentar

CARA KERJA MESIN $ TAK

Four stroke engine adalah sebuah mesin dimana untuk menghasilkan sebuah tenaga memerlukan empat proses langkah naik-turun piston, dua kali rotasi kruk as, dan satu putaran noken as (camshaft).

Empat proses tersebut terbagi dalam siklus :

Langkah hisap : Bertujuan untuk memasukkan kabut udara – bahan bakar ke dalam silinder. Sebagaimana tenaga mesin diproduksi tergantung dari jumlah bahan-bakar yang terbakar selama proses pembakaran.

Prosesnya adalah ;

1. Piston bergerak dari Titik Mati Atas (TMA) menuju Titik Mati Bawah (TMB).
2. Klep inlet terbuka, bahan bakar masuk ke silinder
3. Kruk As berputar 180 derajat
4. Noken As berputar 90 derajat
5. Tekanan negatif piston menghisap kabut udara-bahan bakar masuk ke silinder

—————————————————————————————————————————————–

LANGKAH KOMPRESI
Langkah Kompresi

Langkah Kompresi

Dimulai saat klep inlet menutup dan piston terdorong ke arah ruang bakar akibat momentum dari kruk as dan flywheel.

Tujuan dari langkah kompresi adalah untuk meningkatkan temperatur sehingga campuran udara-bahan bakar dapat bersenyawa. Rasio kompresi ini juga nantinya berhubungan erat dengan produksi tenaga.

Prosesnya sebagai berikut :

1. Piston bergerak kembali dari TMB ke TMA
2. Klep In menutup, Klep Ex tetap tertutup
3. Bahan Bakar termampatkan ke dalam kubah pembakaran (combustion chamber)
4. Sekitar 15 derajat sebelum TMA , busi mulai menyalakan bunga api dan memulai proses pembakaran
5. Kruk as mencapai satu rotasi penuh (360 derajat)
6. Noken as mencapai 180 derajat

—————————————————————————————————————————————–

LANGKAH TENAGA

Langkah Tenaga

Langkah Tenaga

Dimulai ketika campuran udara/bahan-bakar dinyalakan oleh busi. Dengan cepat campuran yang terbakar ini merambat dan terjadilah ledakan yang tertahan oleh dinding kepala silinder sehingga menimbulkan tendangan balik bertekanan tinggi yang mendorong piston turun ke silinder bore. Gerakan linier dari piston ini dirubah menjadi gerak rotasi oleh kruk as. Enersi rotasi diteruskan sebagai momentum menuju flywheel yang bukan hanya menghasilkan tenaga, counter balance weight pada kruk as membantu piston melakukan siklus berikutnya.

Prosesnya sebagai berikut :

1. Ledakan tercipta secara sempurna di ruang bakar
2. Piston terlempar dari TMA menuju TMB
3. Klep inlet menutup penuh, sedangkan menjelang akhir langkah usaha klep buang mulai sedikit terbuka.
4. Terjadi transformasi energi gerak bolak-balik piston menjadi energi rotasi kruk as
5. Putaran Kruk As mencapai 540 derajat
6. Putaran Noken As 270 derajat

—————————————————————————————————————————————–

LANGKAH BUANG

Exhaust stroke

Exhaust stroke

Langkah buang menjadi sangat penting untuk menghasilkan operasi kinerja mesin yang lembut dan efisien. Piston bergerak mendorong gas sisa pembakaran keluar dari silinder menuju pipa knalpot. Proses ini harus dilakukan dengan total, dikarenakan sedikit saja terdapat gas sisa pembakaran yang tercampur bersama pemasukkan gas baru akan mereduksi potensial tenaga yang dihasilkan.

Prosesnya adalah :

1. Counter balance weight pada kruk as memberikan gaya normal untuk menggerakkan piston dari TMB ke TMA
2. Klep Ex terbuka Sempurna, Klep Inlet menutup penuh
3. Gas sisa hasil pembakaran didesak keluar oleh piston melalui port exhaust menuju knalpot
4. Kruk as melakukan 2 rotasi penuh (720 derajat)
5. Noken as menyelesaikan 1 rotasi penuh (360 derajat)

—————————————————————————————————————————————–

FINISHING PENTING — OVERLAPING

Overlap adalah sebuah kondisi dimana kedua klep intake dan out berada dalam possisi sedikit terbuka pada akhir langkah buang hingga awal langkah hisap.

Berfungsi untuk efisiensi kinerja dalam mesin pembakaran dalam. Adanya hambatan dari kinerja mekanis klep dan inersia udara di dalam manifold, maka sangat diperlukan untuk mulai membuka klep masuk sebelum piston mencapai TMA di akhir langkah buang untuk mempersiapkan langkah hisap. Dengan tujuan untuk menyisihkan semua gas sisa pembakaran, klep buang tetap terbuka hingga setelah TMA. Derajat overlaping sangat tergantung dari desain mesin dan seberapa cepat mesin ini ingin bekerja.

manfaat dari proses overlaping :

1. Sebagai pembilasan ruang bakar, piston, silinder dari sisa-sisa pembakaran
2. Pendinginan suhu di ruang bakar
3. Membantu exhasut scavanging (pelepasan gas buang)
4. memaksimalkan proses pemasukkan bahan-bakar

Oke dengan mengenal prinsip dan cara kerja mesin 4 tak, semoga dapat menjadi pegangan awal sebelum merencanakan modifikasi. Mana hal yang penting untuk dimanfaatkan agar proses langkah tenaga bekerja optimal. Tetap sehat… Tetap semangat! Biar bisa modifikasi mesin tiap hari :)

Quiz : Mengapa bahan bakar tidak cenderung kembali ke karburator saat terjadinya proses overlaping?

R.A.T Motorsport .: HOUSE OF PERFORMANCE :.

Visit Us @ Desa Tropodo Indah Blok N no. 26-28

Waru — Sidoarjo

diposting oleh ariefdanisa @ 00.54   0 Komentar

Kamis, 04 Juni 2009

REAMER KARBURATOR STANDAR

Reamer karburator by R.A.T

Update sharing hari ini adalah tentang How To Tune karburator ^_^ Ini juga sebagai lanjutan update modifikasi mesin jupiter z yang ingin kencang tapi irit biaya tu kmaren tu loh… Hehehe.. Ati Karep Bondo Cuphet Jahhh…

Reamer karburator emang ga bisa dilakoni sembarangan, kudu ati2 dan kalem… Makanya orang jogja garapannya alus2 wong kalem2 dan sabar.. walah out of topic malah… Hehehehe.. Tapi tenang aja Reamer ala RAT Surabaya juga boleh dijajal kok…

Yang perlu diperhatikan adalah saat pembesaran harus dilakukan dengan mendesain ulang lubang Vent ouval ke atas, karena yang kita kejar adalah Power putaran atas maka reamer harus berbentuk begitu. Kalo diratain bunder ser ampe bawah mah motor susah idle pastinya. Lagian, ngapain juga nge-reamer ke arah bawah? Malah bikin udara banyak bablas lewat skep karburator walau udah nutup full.
Jangan lupa bagian belakang

Jangan lupa bagian belakang

Untuk moncong karbu yang dagingnya tebel kayak Karbu PE-28 bisa direamer dindingx 0.5mm kalo mau ekstrem ya coba aja 1mm, lebih dari itu dikhawatirin dinding karbu lobang. Tapi kalopun lobang bisa ditambal kok hehehe, mau karbu PE-28mm jadi 31mm?? Ayookkkk ajah..!!

Untuk karbu bebek apalagi yang kecil kaya punya Jupiter Z nih gak memungkinkan untuk direamer, lagian kalo direamer bentukx jadi jelek. Kan males ngeliat yang jelek2 hehehhee… Maka fokus kita adalah memperbesar skep karburator, mengganti dengan skep punya motor RC 100 dengan diameter 19mm, dari aslinya yang 17mm. Pengerjaan ini memang membutuhkan bantuan tukang bubut karena perlu mengikis lubang botol tabung skep sekitar 1mm.
Reamer Karburator Jupiter Z

Reamer Karburator 17mm ke 19mm

Lanjut… setelah area moncong dan Venturi kelar kena reamer maka terakhir fokus reamer adalah pantat karburator yang nempel ama manifold intake. Tetep batasan aman buat korek harian mah 0.5mm rata dinding samping dan atas, INGAT! INGAT! yang bawah jangan dikorek. Mending dibuat pola dulu dengan speedol baru dari dinding skep ditarik mundur, jadi bentuknya seperti corong yang berlawanan ama moncong karbu. Kalo kesusahan ya dibuat tarik rata aja gakpapa kok. Dont forget to adjust alignment with the intake manifold -bahasa madura keluar- hehehe.. maklum ketularan tukul sok keminggris.

Ongkos pengerjaan reamer untuk karbu gede seperti PE 28mm adalah 250 ribu, itu sudah termasuk penggantian SKEP karburator dengan bahan stainless steel. Untuk karburator bebek kita tarik ongkos 200 ribu, itu juga sudah pakai SKEP stainless steel juga. Jika tanpa rubah skep karbu, ongkos reamer aja hanya 50 ribu untuk karbu bebek, karbu motorsport mah kena 60 ribu. Murah meriah kencang… Gas Polll…!!!

diposting oleh ariefdanisa @ 03.09   3 Komentar

memilih karburator racing

Bagaimana memilih karburator yang sesuai…? Dengan banyaknya karburator aftermarket dengan kemasan-kemasan menggiurkan tentu membuat kita ngiler berat dan takutnya menjadi gila belanja barang ber-merk seperti tante-tante tanpa melihat kebutuhan. Asal karbu gede pasti kenceng, keliru, mbrebet mungkin iya hehehehe… Meski karbu kecil jika kita dapat menemukan setelan yang pas akan jauh lebih baik.

Hanya sedikit berbagi ilmu tentang formula menentukan ukuran karburator ideal dengan kapasitas silinder mesin serta rpm max power yang diinginkan.

THROTLE = VARIAN x SQRT ( DISPLACEMENT * PEAK )

Dimana THROTLE adalah nilai yang akan kita cari, merupakan diameter Venturi / throttle body dalam satuan millimeter yang menentukan ukuran karburator yang harus dipilih. DISPLACEMENT adalah satuan kapasitas isi silinder dalam liter. PEAK yaitu putaran mesin maksimum yang bisa dihasilkan. VARIAN adalah konstanta penentu apakah mesin kamu special engine ataukah mesin produksi massal. Nilai varian memiliki rentang 0.56 hingga 0.9 , dimana motor Moto GP memakai nilai maksimal yaitu 0.9, sehingga kelas MOTO GP 125 cc dimana mesin mampu berkitir hingga 14.000 RPM berani memakai karburator gambot sebesar 38mm, sedangkan kelas drag bike lokal biasanya cukup memakai karburator 34mm.

Sebagai contoh,

Kita ambil sebuah motor standar Jupiter z missal, dengan kapasitas 107cc, ingin mencapai tenaga di putaran 7500 RPM. Varian yang dipakai adalah 0.6

Sehingga ketika dimasukkan ke dalam rumusan tersebut adalah sebagai berikut :

THROTLE = 0.6 x sqrt ( 0.107 * 7,500 )

Didapat hasil Throtle adalah 16.9 atau jika dibulatkan adalah 17mm, itu merupakan spek standard pabrik yang tentunya sudah dihitung cocok untuk dipakai harian, nyaman dipakai menggonceng pacar -bagi yang jomblo ga usah iri… sama kok hehehehe- Motor dengan spek seperti ini jauh dari kata bikin ribet. Tapi kalo turun balap ya keburu kehabisan nafas dan ditinggal minum kopi sambil rokokan ama lawan di garis finish hehehehehhehe… Kasian.


Jika kita turun balap drag bike dengan motor jupiter z di kelas 125cc, biasanya tuner menggandeng karburator PE 28mm bukan tanpa alasan, karena tugas karburator tersebut harus mampu mensupport hingga 14.000 RPM, tinggal bagaimana CDI mampu menghasilkan kurva pengapian yang pas serta membuka limiter putaran mesin. Kemampuan karbu serta fokus tenaga pada RPM tinggi harus di desain sedemikian rupa sehingga klep dan ruang porting mampu mengimbangi. Desain Camshaft dengan durasi extreme dan LSA kecil memungkinkan overlaping memberi keuntungan di putaran tinggi. Agar putaran bawah tidak terlalu lemot maka rasio kompresi perlu ditingkatkan dan optimalisasi ruang bakar adalah mutlak.

Nah, seberapa besar reamer karburator ataukah keputusan untuk mengganti karburator dengan venturi yang lebih besar dapat berawal dari rumusan ini. Jadi keputusan yang bijak dapat menghasilkan pilihan karburator yang asyik dipakai harian, oke diajak turing, ataupun bertenaga istimewa saat dipacu untuk balap.

Best regards,

d.swega

* R.A.T motorsport

diposting oleh ariefdanisa @ 02.21   0 Komentar

Selasa, 02 Juni 2009

SETTING KARBURATOR

GRAPHIC EFFECT SPUYER TERHADAP KINERJA KARBURATOR
Beberapa orang kadang berpikir menyetel karburator adalah pekerjaan yang sangat gampang. Ganti jet-nya setingkat atau dua tingkat, meniru setelan karburator orang lain yang sudah ketemu dan BOMM!! Mesin motor melaju kencang. Hmmm… mungkin iya pada mesin standard ataupun mengalami modifikasi ringan. Tapi untuk balap, tidak terdengar semudah itu. Ada banyak kombinasi dari setingan idle jet, needle jet, posisi clip, main jet, power jet, level bahan-bakar (set up pelampung), dan lain-lain dan sebagainya. Ada setidaknya menurut perhitungan statistika, sekitar 13,860,000 kombinasi jeting dalam sebuah karburator hehehehe… jika mau bermain karburator setidaknya siapkan mental, waktu dan tenaga untuk menyelaraskan semua kinerjanya. Disini kami ingin membantu dengan sedikit pengetahuan dasar dan penyetelan karburator untuk mempermudah teman-teman dalam menemukan fine tuning, bisa diaplikasi untuk menyetel ulang karburator yang udah pada modif mesin.

KARBURATOR VENTURI
Perhatikanlah muka karburator, dan kamu akan menyadari karburator hanyalah sebuah lubang besar dari satu tempat ke tempat lain, ini dinamakan venturi. Udara masuk ke dalam mesin melalui lubang ini (venturi). Sebagaimana kecepatan udara memasuki karburator meningkat, tekanannya justru menurun, yang kemudian menimbulkan kevakuman di area venturi. Kevakuman ini bergerak seiring bukaan skep (throttle), dan menghisap bahan-bakar melalui jet yang berbeda-beda di sistem karburator. Udara dengan bahan-bakar akan bercampur di area venturi. Dimana posisi jet ditempatkan dan pengeluarannya pada venturi menghasilkan kontrol terhadap respon bukaan gas. Sistem langsam ( pilot jet, dan setelan skrup udara) mengontrol hingga bukaan skep 25 %. Jarum skep, posisi clip dan nozzle karburator mengontrol dari 15 % bukaan gas hingga 80 %. Main jet mengontrol bukaan gas penuh atau berefek mulai dari bukaan gas diatas 60 %. Namun ada hal yang harus diingat dalam menyetel karburator, kesemua bagian adalah interconnected (terhubung satu dengan lain) sehingga penggantian sebuah part akan mempengaruhi kinerja sistem lainnya. Bekerja hati-hati, dan teliti adalah kuncinya.

CARB TUNING
SET UP KARBURATOR
1. Untuk bukaan gas dari kondisi tertutup hingga seperempat bukaan skep
1. Ganti pilot jet / idle jet untuk mengatur campuran
2. Setel ulang skrup udara untuk penyempurnaan aturan ( 1 ½ hingga 2 putaran keluar dari posisi menutup penuh)
2. Dari posisi seperempat bukaan hingga sepertiga bukaan gas
1. Setel posisi klip jarum skep
2. Ganti tipe jarum skep
3. Dari posisi sepertiga bukaan gas hingga bukaan penuh
1. Ganti ukuran main jet untuk menyetel campuran udara bahan-bakar
2. Ganti ukuran power jet (jika ada) untuk menyempurnakan campuran udara-bahan bakar
4. Bukaan gas separuh hingga bukaan gas penuh
1. Lakukan penyetelan campuran udara/bahan-bakar dengan penggantian mainjet, jarum skep, atau seting posisi klip jarum skep
2. Lakukan pengecekan (baca) hasil pembakaran untuk melihat apakah setelan sudah tepat atau belum

MIKUNI 36mm
CATATAN SET UP:
1. Dasar penyetelan skrup campuran udara di karburator adalah putar hingga menutup penuh, lalu buka satu setengah putaran keluar. Jika mesin masih berjalan dalam kondisi terlalu basah atau kering coba sedikit setel ulang skrup campuran udara lebih membuka atau menutup. Jika hal ini tidak dapat terkoreksi dengan beberapa putaran, maka gantilah pilot jet nya.
2. Jika setelan terlalu basah antara bukaan gas posisi tertutup hingga terbuka separuh, dan tidak dapat dikoreksi dengan penyetelan skrup udara, maka ganti pilot jet ke ukuran lebih kecil.
3. Menjalankan mesin dalam kondisi terlalu basah (campuran kaya) akan menjadikan mesinmu tidak berlari pada kemampuan terbaiknya, menjalankan mesin dalam kondisi terlalu kering lebih berbahaya dan akan merusak komponen mesin seperti piston, liner dan kepala silinder. Sebaiknya ketika melakukan penyetelan karburator, lakukan dari kondisi campuran kaya dan lakukan setelan lebih rendah secara bertahap untuk menemukan setelan pas.
4. Lihat dan baca kondisi busi untuk mempelajari campuran yang dibutuhkan mesin.
• Jika elektroda berwarna hitam, atau basah jelaga; kondisi mesin terlalu banyak bahan-bakar (campuran kaya). Bahan-bakar yang tak terbakar menyebabkan kerak mengendap di busi.
• Busi kondisi kering dan berwarna keabu-abuan, atau bahkan putih kapur. Mesin berjalan dalam setelan yang terlalu kering, dan berbahaya bagi kondisi mesin. Pakai jet yang lebih besar untuk mendapatkan setelan yang lebih kaya.
• Warna elektroda kecoklatan dan bersih, maka kamu sudah menemukan setelan terbaik yang dibutuhkan mesin.
Ketika melakukan penggantian main jet lebih besar akan mempengaruhi performa mesin mulai dari bukaan gas separuh hingga gas penuh (full throtle). Selalu lakukan penggantian satu-demi satu dan secara bertahap dan cermati perubahan yang terjadi pada performa mesin sebelum merubah faktor lainnya.
Jangan menjalankan mesin dalam kondisi campuran kering (miskin) dalam kondisi terlalu lama yang dapat mengakibatkan overheating (panas yang berlebihan) dan merusak komponen di dalam mesin.

Penyelesaian beberapa persoalan seting karburator.
Permasalahan : Saat stasioner RPM tidak stabil. Mesin berlari tersendat.
Kondisi setelan : Campuran terlalu miskin
Metoda koreksi :
• Putar setelan skrup udara searah jarum jam (menutup) untuk memperkaya campuran.
• Ganti ukuran pilot jet ke angka yang lebih besar
• Ganti jarum skep ke diameter lebih kecil atau bentuk lebih runcing untuk memperkaya campuran bahan-bakar.
Permasalahan : Saat stasioner keluar asap hitam dari knalpot.
Kondisi setelan : Terlalu basah
Metoda koreksi :
• Putar keluar skrup setelan udara untuk memperbanyak campuran udara masuk
• Ganti pilot jet ke nomor lebih kecil
• Ganti jarum skep dengan model yang lebih gemuk
Permasalahan : Ketika motor dijalankan akselerasi lemah
Kondisi setelan : Kering
Metoda koreksi : Ganti dengan ukuran mainjet lebih besar
Permasalahan : Ketika berakselari motor tersendat-sendat
Kondisi setelan : Basah
Metoda koreksi : Kecilkan ukuran mainjet
Permasalahan : Pada posisi seperempat bukaan gas mesin ngambang dan RPM tidak dapat teriak.
Kondisi setelan : Kering
Metoda koreksi :
• Pakai dimensi jarum skep lebih kurus untuk memperkaya campuran bahan-bakar
• Putar skrep setelan udara searah jarum jam untuk memperkaya campuran
Permasalahan : Gas bukaan penuh, Kecepatan bertambah sangat pelan, mesin terasa datar, dan busi tampak basah kehitaman
Kondisi setelan : Terlalu Kaya
Metoda Koreksi :
• Setel campuran dengan menggunakan main jet lebih kecil, terus check kondisi kepala busi hingga warna terkoreksi
Ok, sampai disini semoga bermanfaat dan membantu teman-teman dalam melakukan setup karburator sendiri.
Tetap Sehat, Tetap Semangat! Biar bisa modifikasi mesin tiap hari.
Wassalammualaikum warrahmatullah

diposting oleh ariefdanisa @ 02.42   0 Komentar

MODIFIKASI PISTON UNTUK BALAP

MODIFIKASI PISTON UNTUK BALAP
Rangkaian seher dan setang seher memiliki tugas untuk meneruskan dorongan yang diciptakan oleh ledakan hasil pembakaran ke big end di kruk as. Agar dapat bekerja dengan efisien, piston dan ring piston harus menyekat tekanan ruang bakar pada sisi atas, dibarengi dengan sebisa mungkin meminimumkan gesekan piston v.s liner boring.
Kemampuan ring piston menyekat kompresi tergantung dari beban oleh tekanan selama siklus kerja, terutama suhu tinggi serta tekanan dari ruang bakar saat proses langkah usaha. Tekanan di atas ring piston mencoba melesak melewati ring kompresi – BLOWBY – sementara oli mencoba menerobos lewat ring oli dan ring kompresi kedua.

PISTON RACING
Semua ini terjadi saat mesin berakselerasi ataupun deselerasi, saat pendinginan waktu overlapping atau dalam suhu panas tinggi saat kompresi, bergesekan terus-menerus dengan dinding silinder. Integritas piston dan pemasangan connecting rod yang benar harus dipastikan agar semua ber-performa handal, oleh karena itu pemilihan komponen yang baik akan menentukan prestasi kerja mesin.
PISTON VELOCITY
Putaran mesin memang dibatasi oleh kemampuan per klep menjaga agar klep tidak floating, namun kecepatan piston melaju di dalam silinder juga patut diperhatikan. Terutama pada mesin balap yang cenderung bekerja di RPM selangit. RPM tinggi cenderung mengurangi usia pakai ring piston, keausan lebih cepat, ataupun kerusakan catastrophic dikarenakan beban dinamika piston selama dia naik-turun-naik-turun-putus-nyambung kaya lagunya BBB… lah… :p
Kecepatan gerak piston di dalam silinder bisa diukur dengan mengalikan Putaran mesin dengan panjang langkah piston alias stroke yang bukan penyakit itu. Hehehehe…
VELOCITY = ( ENGINE RPM x STROKE ) / 6
Dimana Velocity adalah kecepatan yang diukur dalam Feet Per Minutes
RPM adalah putaran mesin setiap menit
STROKE diukur dalam satuah inchi
Contoh, sebuah mesin dengan stroke sepanjang 62.2mm alias 2.43 inch, bekerja pada 12,000 RPM, maka piston velocity nya didapat 4,860 fpm. Mesin balap biasa berkinerja dengan piston velocity hingga 5,700 fpm.
Jika kadang-kadang kamu bertanya-tanya kok mobil balap seperti Formula 1 bisa bekerja hingga 17,000 RPM dengan santai tanpa takut mesin rompal meski putar-putar sirkuit berpuluh kali sampai kita ketiduran saat nonton. Selain sistem Pneumatic Valve yang sanggup meladeni putaran tinggi minus gejala floating, rahasianya adalah SHORT STROKE, meski bekerja pada RPM tinggi piston velocitynya tetap dibawah 5,000 fpm.
Lebih penting, saat piston deselerasi berarti kinerja piston sama dengan saat berakselerasi menuju maximum velocity hanya saja dalam arah yang berlawanan. Seandainya beban saat piston berakselerasi mencapai 2,000 gram, serta bobot seher adalah `150 gram, maka beban inersia sebesar 2,000g x 150g x 2.204 = 661,200 gram alias 661 kilogram. W + O + W = WOW! tinggal bagaimana setang piston dan kruk as mampu menerima beban sebesar itu.
PISTON VELOCITY DAN AKSELERASI
Maximum piston velocity terjadi saat connecting rod berada tegak lurus, atau membentuk 90 derajat terhadap ayunan bandul kruk as. Pada situasi ini, sudut lemparan kruk as biasanya mendekati 75 derajat dari TMA, tergantung panjang setang piston. Beban pada kruk as akan semakin besar jika setang piston semakin pendek dan membentuk sudut yang lebih kecil misal 70 derajat. Rasio panjang connecting rod yang ideal diterapkan untuk balap setidaknya harus 70% lebih panjang dari stroke, atau rasio 1.7 : 1 relatif terhadap rotasi kruk as.

diposting oleh ariefdanisa @ 02.41   0 Komentar

KUNCI PERFORMA 4 TAK

Ok, sampailah kita pada pembahasan Dynamic Compression Ratio, alias rasio kompresi dinamis, lebih mudah dipahami sebagai cylinder pressure alias tekanan dalam sebuah silinder. Ini adalah sebuah konsep penting dalam membangun sebuah karakter mesin ber performa tinggi. Sudah siap? Ayo tariiikkk mang..
Hal pertama yang harus kita tanamkan adalah “rasio kompresi (RK)” seperti biasa dibahas para tuner handal lebih cenderung pada term “Rasio Kompresi Statis”. Ini adalah konsep sederhana yang menampilkan perbandingan antara kapasitas mesin saat piston menghisap dalam sebuah silinder kemudian didorong dipadatkan ke ruang diatas permukaan piston kedalam ruang bakar saat berada di Titik Mati Atas (TMA).
Misal, sebuah silinder memiliki displacement 125cc dan volume combustion chamber 15cc ( sudah di plus-plus volume ketebalan gasket, dome piston, deck clearance, dll) maka RK akan didapat 140/15 = 9.33 : 1 alias mimik premium masih oke nih mesin. Jika kita melakukan mill pada cylinder head sebanyak 0.5mm dan mengurangi volume ruang bakar menjadi 12.5cc maka rasio kompresi sudah tembus 11 : 1 alias kudu minum pertamax plus. Dari sini saja kita sudah harus berhati-hati dan teliti tentang pemilihan bahan bakar yang bagus untuk mesin kita.
Sekaligus menjawab pertanyaan mengapa ketika melakukan bore up, motor malah molor dan seringkali ngelitik atau bahkan overheating karena ketidakcocokan bahan bakar dengan suasana hati mesin, tengkar deh… Jangan lupa Bore Up juga mempengaruhi, misal kapasitas didongkrak menjadi 150cc sedangkan head dipapas lagi sehingga volume ruang bakar tinggal 12.5cc, maka RK tembus di angka 13 : 1 yang sudah kudu mimik avgas. Masa iya motor gini mau dipakai harian? Pom bensin yang jual avgas dimana ya om… Hehehehehe
Semua orang tahu bahwasanya Mesin Performa Tinggi memiliki tipikal rasio kompresi tinggi. Semua halaman buku performa selalu bicara gampangnya, Semakin tinggi rasio kompresi maka semakin tinggi Kuda-Kuda tenaga yang dihasilkan. Bisa dipastikan pula peningkatan rasio kompresi sekaligus memperbaiki efisiensi volumetris dan respon puntiran gas. Jadi kenapa gak di pol-pol in aja madetin dome piston ke ruang bakar dan melejitkan RK setinggi langit seperti guru-guru kita jaman TK mengajarkan untuk menggantungkan cita-cita setinggi langit huahahahahah. Sekali RK menyentuh pada besaran nilai tertentu, kecenderungan detonasi akan muncul semakin besar pula. Siapakah detonasi? Bisa dibilang dia adalah sang trouble maker, lord voldemort di Harry potter, Tokoh jahat perusak mesin.
Detonation kill power and kill your engine! Ini bukan judul lagu, tetapi emang kenyataan bahwa detonasi bisa ngerusak mesin. Gimana cara mengatasinya? Sabar… Kemampuan mesin menahan beban rasio kompresi tinggi dapat diukur dari beberapa faktor, desain combustion chamber, material cylinder head, lapisan ruang bakar, material piston, bahan pembuat dinding liner, material valve, nilai rating busi -semakin panas suhu kerja mesin maka penggunaan busi ideal dengan nilai tinggi, semakin tinggi rasio kompresi penggunaan busi cenderung membutuhkan elektroda kecil yang memiliki voltase kuat dan fokus- Sekali aspek mekanis dalam mesin diperbaiki, maka variabel utama yang mebatasi tetep : KETERSEDIAAN BAHAN BAKAR DENGAN NILAI OKTAN TINGGI. Semakin tinggi nilai oktan = semakin tahan terhadap detonasi dan kemampuan toleransi terhadap tekanan kompresi.

Dongeng diatas memunculkan pertanyaan yang seharusnya ada di pikiranmu, Seberapa tinggi seharusnya Rasio Kompresi mesin yang akan saya bangun? Kalaupun kamu mengetahui seluk beluk detail mesinmu dan memutuskan bahan-bakar apa yang bisa kamu peroleh dan akan kamu pakai, pertanyaan itu tetap tidak bisa terjawab dalam sekejab. Tanya Kenapa? Because karena tanpa referensi ataupun data dari spesifikasi noken as, RASIO KOMPRESI TIDAK BERARTI APA-APA!!! Lho, kok bisa? Dynotest yang akan membuktikan silahkan patok rasio kompresi yang sama dengan camshaft yang berbeda, gampangnya gini, mesin standard, upgrade pake camshaft CLD apa KAWAHARA atau kalau punya duit beli cam NMF thailand ngefek gak? Pasti ngefek! Well… dimana bedanya, kem mana yang memiliki performa paling oke di rentang RPM berapa.
Pikirin tentang bagaimana siklus sebuah mesin dan bagaimana dulu guru-guru kita mengajarkan proses mesin 4 langkah. Power stroke sudah selesai dan piston mulai bergerak naik ke atas. Klep masuk pastinya tertutup dan klep buang sudah terbuka. Seketika piston bergerak naik sekaligus membantu mendorong gas buang ke exhaust port. Sesaat sebelum piston mencapai TMA klep intake sudah mulai terbuka *disini point penting seringkali piston bertabrakan dengan klep adalah saat proses overlaping karena per klep floating, Piston berada pada TMA saat kedua klep terbuka sedikit untuk mendinginkan mesin. Kemudian piston bergerak turun dan klep buang tertutup sempurna dibarengi terbukanya klep hisap lebar-lebar. Gas segar masuk dengan sempurna ke dalam silinder. Sampailah piston di TMB dan ancang-ancang untuk melakukan langkah KOMPRESI! Inilah poin kritis kedua sebelum kita memahami Rasio Kompresi Dinamis (RKD).

Saat piston TMB, semua tahu klep intake masih terbuka. Akibatnya, meki piston sudah mulai bergerak naik, belum terjadi sedikitpun KOMPRESi karena klep intake masih terbuka. Kompresi baru dimulai jika dan hanya jika klep intake sudah tertutup penuh sempurna. Dan saat itulah campuran udara/bahan bakar dipadatkan! Rasio kompresi saat klep intake benar-benar sudah tertutup itulah yang dinamakan RKD.
RKD adalah kondisi pemadatan udara-bahan bakar yang sesungguhnya harus dihitung, bukan RK saja. Karena eh karena RKD tergantung pada derajat klep menutup, maka cam spec memiliki banyak effect dalam RKD sebagaimana spesifikasi teknis motor. RKD nilainya pasti lebih rendah dibanding RK. Kebanyakan mesin street performance dan semi-race motor memiliki RKD pada rentang 8 – 8.5 : 1. Dengan tipikal cam tertentu, bisa saja rasio kompresi mesin berada di 11 : 1 – 12 : 1. Lebih dari ini? Dipastikan lord voldemort akan muncul di mesinmu. Mesin dengan camsahft “kecil” akan butuh RK lebih rendah untuk mencegah detonasi. Mesin dengan cam “besar” dengan klep intake yang semakin lambat menutup bisa saja aplikasi rasio kompresi tinggi. Jika bisa mendapatkna VP Racing fuel maka sah-sah saja memakai RKD dan RK lebih tinggi. Tentu saja, motor balap dengan cam “lebar” bisa dipahami mereka bisa melewati rasio kompresi setinggi 13:1 – 15:1 karena eh karena cam mereka memiliki durasi overlaping lebih lama, yang berarti proses pendinginan mesin lebih lama serta RKD yang tetap proporsional.
Catatan : Banyak orang bingung dengan penggunaan istilah RKD. Beberapa orang mengartikannya sebagai karakteristik dari sebuah mesin yang melakukan proses running pada kecepatan tinggi. Dalam kasus tersebut, yang diperhatikan adalah volumetric efficiency dari mesin akan mempengaruhi secara signifikan terhadap tekanan silinder. Pada kasus kita, durasi noken as semakin lebar akan meningkatkan tekanan silinder lebih mendekati saat rev area saja. Sehinnga, semakin besar tenaga dan semakin besar tekanan silinder diciptakan pada RPM tinggi.

Enaknya kita memahami hal ini sebagai konsep “Tekanan Silinder” untuk menghindari kerancuan. Jadi ukuran RKD bisa ditilik setidaknya dari Compression Tester Gauge. Belum pada punya? Cape dehh… Beli napa ga nyampe 200rb ini…
Durasi noken as secara riil akan mempengaruhi performa sebuah mesin, sebagai contoh ketika kita memilih noken as berdurasi 310 derajat, kemudian kita ukur dengan dial gauge ternyata… this type of camshaft has an timing opening point @ 50 degree before the piston reach Top Dead Centre, dan benar-benar membuat klep intake menutup pada 80 derajat sesudah piston bergerak naik dari Titik Mati Bawah. Berarti sisa untuk langkah kompresi tinggal berapa anak-anak? Hah!? berapa? 90 derajat? Budi! Ayo berdiri di depan kelas sambil angkat kakinya dua-duanya… -Ngawang kalee-
Setiap siklus dalam mesin 4 langkah terjadi memakan proses sebanyak 180 derajat kruk as, sehingga langkah kompresi hanya tinggal 180 – 80 derajat = 100 derajat! Pinter… Nah, berarti langkah kompresi kita gak 100 persen dong? Ya iya lah… tadi kan diatas udah dijelasin kalau nilai RKD pasti lebih kecil dari RK. Gampangnya jika langkah kompresi diprosentasekan maka 100 / 180 derajat x 100 % = 55 %. Jadi jika kita punya mesin dengan RK 10 : 1 maka rasio kompresi sesungguhnya tinggal 5.5 : 1, gitu? Gak segampang itu sobat… Perhitungan yang lebih matang dan mantab akan mampu membuat mesin 4 tak meninggalkan jauh mesin 2 tak… Hmmmm… Obsesi nih
Menghitung RKD membutuhkan beberapa data, dan kalkulator tentunya, masa bisa pake sempoa? Pertama, nilai stroke setelah klep intake benar-benar menutup harus didapat. Ini perlu tiga input : Intake Valve Closing Point, Panjang Connecting Rod, Langkah sesungguhnya, dan beberapa rokok biar ga bosen ngitung heheheheh asal! Berikut formulanya yang ga pake one, nanti jadi formula-one dong, jago saya L. Hammilton kan item manisnya mirip saia hahahahahahahah

Daripada ribet-ribet ngitung tinggal klik aja di http://www.wallaceracing.com/dynamic-cr.php tinggal input-input data dan klik, jadi deh…
Misal motor Yamaha Jupiter, dengan diameter piston 51mm , stroke 54mm, panjang rod 96mm, inlet close pada 80 ABDC. Maka inputnya adalah Bore = 2.0 inches, Stroke = 2.12 inches, Rod length = 3.77, static comression ratio 14 : 1, inlet valve close 80 ABDC. Klik tombol calculate, maka hasilnya adalah :
Static compression ratio of 14:1.
Effective stroke is 1.39 inches.
Your dynamic compression ratio is 9.52:1 .

Mantab kan… Nah lalu apa gunanya kita mengetahui rasio kompresi dinamis? Tentu saja untuk mengetaui perbandingan arah modifikasi kita sudah bener apa belum… Misal jupiter standard inlet valve close pada 65 derajat, jika ingin modifikasi street performance, maka cukup naikin rasio kompresi standard yang awalnya 9 : 1 , bisa dibuat jadi 10.5 : 1 dengan bahan-bakar pertamax, maka rasio kompresi dinamisnya akan berada pada point 8.3 : 1, ini persis seperti apa yang dibilang diatas. Kalau nilai rasio kompresi sudah diperoleh maka tinggal mengatur porting area mau dipatok di RPM berapa, yang pasti jangan lebih tinggi dari 9.000 – 10.000 RPM. Dijamin motor tipe ini akan lebih mudah di tune dibandingkan dengan yang rasio kompresi sama dengan durasi camshaft tinggi. Atau kebalikannya, motor balap dengan rasio kompresi 14 : 1 dengan noken as standard akan sangat sulit di tune dibandingkan dengan yang memakai camshaft “besar”.

diposting oleh ariefdanisa @ 02.40   1 Komentar

KOREK MESIN 4 TAK

gw mulai dari soal yg saya tahu berdasarkn yg di ajarkan oleh me tuner mas AGus tri Pamungkas ( kikiks )

( Modifikasi motor 4 langkah / 4 tak )

Untuk meningkatkan daya atau power mesin motor standart yang biasa disebut tune up, perlu diusahakan perubahan-perubahan pada beberapa hal :
1. Meningkatkan / menaikkan perbandingan kompresi.
2. Memperbaiki porting IN maupun EX supaya pemasukan bahan bakar menjadi lancar dan baik.
3. Merubah durasi, Lift noken as.
4. Mengubah pengapian (apabila dalam perlombaan diperbolehkan).
5. Mengubah rasio dengan Close Rasio.
6. Setting karburator.

KOMPRESI

Meningkatkan perbandingan kompresi (Compretion Ratio = CR) adalah cara awal yang ditempuh oleh para mekanik untuk meningkatkan power mesin. Namun demikian untuk meningkatkan perbandingan kompresi perlu diperhatikan beberapa faktor, antara lain :
1. Bahan bakar yang digunakan.
2. Kwalitas piston yang digunakan.

CARA MENAIKKAN KOMPRESI :
1. Mengganti piston dengan model racing.
2. Mendekatkan deck clearance.
3. Membubut Head.
4. Mengelas Head.
5. Membubut Blok dan Piston.

CARA MENURUNKAN KOMPRESI :
1. Merimer dome pada head.
2. Memperdalam coakan klep pada piston.
3. Membubut piston.

KEUNTUNGAN MENGGUNAKAN KOMPRESI TINGGI :
1. Power mesin meningkat.
2. Final gear menjadi berat.
3. Power mesin terasa dari putaran bawah sampai atas.

KERUGIAN MENGGUNAKAN KOMPRESI TINGGI :
1. Mesin menjadi cepat panas .
2. Engine break menjadi besar dan kasar.
3. Apabila perhitungan kompresi tidak tepat, sering terjadi detonasi.

Untuk mengetahui / menghitung perbandingan kompresi (CR) dari satu mesin, kita perlu mengetahui dulu volume silinder yang akan dikerjakan.

CONTOH PADA MESIN JUPITER Z O/S 100
Bore atau D : 52 mm = 5,2 Cm
Stroke 54 mm = 5,4 Cm
= 0,785 x 5,22 X 5,42
= 114,62 cc
≈ 115 cc

CONTOH PADA JUPITER Z O/S 100
Volume ruang bakar diukur dengan buret lewat busi adalah 14,55 c
Jadi Volume ruang bakar 14,55 cc - 0,7 cc = 13,85
( 0,7 cc adalah Volume Ruang Busi )

Cara menentukan berapa cc isi ruang bakar yang harus kita pakai pada perbandingan kompresi yang sudah kita tentukan.Misalnya kita menginginkan perbandingan kompresi 1 : 14 berapa volume ruang bakarnya ?
Berarti apabila kita menginginkan perbandingan kompresi 1 : 14, isi ruang bakar harus 8,84cc.

PORTING

Maksud dari mengubah porting adalah usaha untuk meningkatkan atau memperbaiki efisiensi volumetric dengan mengoptimalkan aliran gas ke dalam ruang bakar.
Ada 3 faktor yang menentukan besarnya tenaga pada sebuah mesin :
1. Efisiensi mesin
yaitu seberapa dorongan pada piston yang dihasilkan oleh gaya putaran fly wheel.
2. Efisiensi thermal (panas)
yaitu seberapa banyak bahan bakar yang harus dibakar/ dipanaskan dalam silinder untuk mendorong piston turun menuju TMB secara efisien.
3. Efisiensi volumetric
yaitu membuat saluran / ukuran yang tepat untuk memompa gas secara optimal.

Macam Macam Bentuk Porting
Dalam modifikasi, Head usahakan agar tidak mendapat hambatan apapun, misalnya lubang intake dengan lubang manifold atas juga harus sama dengan joint / karet manifold, usahakan dalam merimer supaya tidak ada ruang yang menyudut. Expanded Sides itu adalah bentuk porting yg benar & smpe skr mash di terapkn oleh tuner² ternama ( untuk mempelajari lebih lanjut silahkan Download books Porting HEAD By A.Graham.Bell http://speedol.net/index.php?option=com_content&task=view&id=61&Itemid=120 )


NOKEN AS

Di antara komponen pada motor yang paling utama untuk meningkatkan kecepatan mesin adalah memodifikasi camshaft / cam/ noken as. Noken as berfungsi mengatur buka / tutup klep yang dibutuhkan untuk mengatur bahan bakar melewati klep in dan membuang melewati klep ex secara selaras.

CARA KERJA NOKEN AS SEBAGAI BERIKUT :

1. Apabila titik A menyentuh pelatuk, maka katup mulai terangkat dan akan terbuka penuh setelah mencapai puncak tonjolan ( titik B ).
2. Setelah melewati puncak, katup akan turun kembali dan tertutup rapat setelah titik C.
3. Dari A kemudian naik ke C dan kemudian kembali ke B disebut durasi noken as.
4. Tinggi tonjolan menentukan Lift Max.
5. Bentuk permukaan profil tonjolan menentukan percepatan penutupan dan pembukaan katup oleh bentuk permukaan profil tonjolannya.

LIFT MAX
Cara menentukan Lift Max pada motor balap :
Secara teori untuk motor standart, Lift Max adalah 23% dari diameter klep in. Kemudian untuk motor balap dengan sirkuit yang tidak begitu panjang, Lift Max sekitar 29% - 31% dari diameter klep in. Untuk balap dengan sirkuit panjang, Lift Max dapat dibikin sampai dengan 35% dari diameter klep.

DURASI
Cara menghitung durasi ada beberapa cara :
1. Durasi dihitung setelah klep mengangkat 1,27mm pada setelan klep 0 (zerro).
2. Durasi dihitung pada saat klep mulai membuka pada setelan klep 0,10 mm.

Untuk mempermudah pembuatan, kita akan menggunakan cara yang ke dua. Sebelum kita ingin menentukan angka durasi, harus kita ketahui dulu berapa LC (lobe center) pada noken as yang akan kita modifikasi.

Untuk mengetahui LC, kita harus memasang noken as pada mesin dan mengukur dengan busur derajat yang dipasang pada kruk as sebelah kiri / magnet.

Sebagai contoh :
LC PADA JUPITER Z : 103
Kita menginginkan durasi 310 derajat.
Berapa derajat in open dan berapa derajat in close ?

Perhitungan Untuk Mencari in close :
310 - 180 - 52 = 78

BERARTI UNTUK LC 103 JIKA KITA MENGINGINKAN DURASI 301 ANGKA DURASINYA ADALAH :
IN OPEN 52 SEBELUM TMA
IN CLOSE 78 SETELAH TMB

Untuk motor balap durasi idealnya adalah 29 - 33.
Untuk lift max motor balap durasi idealnya adalah :
7,5 mm - 8,3 mm

Keuntungan menggunakan lift tinggi dan durasi besar :
- Tenaga mesin menjadi sangat besar
- Mesin sangat bagus di putaran atas

Kerugian menggunakan lift tinggi dan durasi besar :
- Pada putaran bawah kurang bagus
- Per klep menjadi tidak awet
- Klep floating / melayang apabila pir klep tidak kuat
- Coakan klep pada piston harus dalam

CARA MENGGERINDA CAM
- Bagian Base Circle digerinda kurang lebih 18 sampai ketemu lift yang diinginkan
- Kemudian diikuti dengan menggerinda bagian ram untuk menentukan durasi
- Menggerinda bagian flank untuk menentukan lift O/L dan membentuk profil
- Usahakan dalam menggerinda sebuah kem dengan rata dan halus untuk menjaga agar rocker arm tetap awet dan mengurangi floating.

IGNITION / PENGAPIAN

Bagian pada mesin berfungsi untuk membakar campuran bahan bakar dan udara yang di kompresi oleh piston, sebelum piston mencapai TMA.
Sumber arus listrik untuk menghasilkan loncatan api bisa berasal dari spul atau langsung aki.
Sumber listrik yang dihasilkan langsung dari sepul sering disebut pengapian AC, dan langsung dari aki sering disebut pengapian DC.

Pengapian AC
Keuntungan menggunakan sistem AC :
- Sistem listrik langsung sesuai dengan putaran mesin.
- Tidak perlu menggunakan aki
Kerugian menggunakan sistem AC :
- Putaran mesin sedikit berkurang, karena gaya magnet yang ada

Pengapian DC
Keuntungan menggunakan sistem DC / Total Lost :
- Tidak perlu menggunakan magnet
- Berat rotor bisa dibuat sesuai keinginan kita (bisa sangat ringan)
Kerugian menggunakan sistem DC / Total Lost :
- Harus sering mengisi ulang (recharging) aki (accu)
- Resiko terjadi aki tekor

Perbedaan waktu pengapian standart dan yang sering digunakan untuk balap:

Pengapian untuk motor standart
• Pada RPM rendah (1.000 – 3.000 RPM) : loncatan api pada 8 - 15 sebelum TMA
• Pada RPM tengah tinggi (4.000 ke atas) :loncatan api pada 25 - 30 sebelum TMA
• Api busi tidak besar dibanding pengapian balap

Pengapian untuk motor balap
• Pada RPM rendah (1.000 – 3.000 RPM) : loncatan api pada 20 - 30 sebelum TMA
• Pada RPM tengah sampai tinggi ( 4.000 ke atas) : loncatan api pada 35 - 42 sebelum TMA
• Api busi besar

Macam macam jenis CDI

1. single map
cdi yang terdiri hanya dengan 1 map/kurve
contoh : cdi bawaan motor, cdi brt dual band, XP HP 7

2. multi map
cdi yang terdiri lebih dari 1map / kurve yang dapat kita pilih sendiri dengan beberapa click.
contoh : cdi rextor adjustable, cdi brt smart click XP andrion

3. cdi programable
cdi yang bisa diatur kurve/ grafik pengapian menurut keinginan kita, yang disesuaikan dengan karakter mesin yang dibutuhkan. contoh : rextor programable, cdi vortec, cdi brt remote, XP Andrion Series LE 4



Source By Me Tuner Pusaka Racing Team Mas Tri

diposting oleh ariefdanisa @ 02.39   2 Komentar

KOHAR JUPIE Z


Aplikasi korek mesin bukan hanya berujung pada penggunaan motor di lintasan balap a.k.a Circuit, juga ga harus bikin motor wajib ngandang di bengkel mulu karena emang udah ga bisa dipake harian, dan terus menerus di riset untuk perkembangan dan maintenance. Yang satu ini korek mesin untuk Jupiter Z dipake ngampus oleh sang empunya.


Korek harian bisa saja dibatasi oleh rasio kompresi dan bahan-bakar yang akan dipakai, karena pilihan di pompa bensin cuma ada premium untuk kompresi 9 : 1 hingga pertamax plus yang kuat menahan kompresi 11:1, tapi untuk part lain bebas dan tidak ada aturan mau seberapa ekstreme hehehehee…

Seperti yamaha jupiter z yang satu ini, modif pertama yang disasar adalah meningkatkan kapasitas mesin dari 110cc menjadi 129cc yang ditempuh dengan cara menebus piston Kawasaki Kaze oversize 1.75. Agar masih dapat digunakan sehari-hari maka liner bawaan pabrik pun dilengserkan dan diganti dengan boring milik Kawasaki Kaze, hanya saja panjangnya perlu disesuaikan dengan milik Jupiter Z.
Kelar menata rasio kompresi, maka selanjutnya menyasar pada diameter porting intake yang reamer sebesar 22mm agar mampu diajak berlari penuh tenaga di putaran mesin 10,000 RPM. Noken As pun tak luput menjadi sasaran modifikasi, dijadikanlah noken as racing jupiter z dengan durasi ditentukan 282 derajat dengan lift 8.1mm untuk intake dan 7.9mm untuk exhaust.

Knalpot menebus punya bang Asep Hendro dari AHRS Factory tipe lama, CDI cukup mengandalkan CDI Digital Varro. Sebagai pengunci ubahan modifikasi dipilihlah karburator KOSO 28mm untuk mendampingi keseharian kuliah. Kalau diselah, duh bunyinya bikin ribut satu kampung huekkehheueukeek…

Sebagai pendukung penampilan cover body dilengserkan dan diganti labur warna pink -kesannya Gay banget ya hehehehheh sorry bro no offense- katanya biar keliatan centil motornya tapi begitu di gas Garang! Yaaahhh… mirip si Susy yang imut dan centil tapi kalo lagi marah bisa jadi Susilo! Huakakakakakak
Pokoknya tetap sehat tetap semangat biar bisa Gas Polll…!!!
Spesifikasi teknis : Porting inlet 22 mm , porting exhaust 20mm, Piston Kawasaki Kaze, Klep inlet dan exhaust Honda Legenda, Camshaft Vega papasan, Rocker arm Vega Lama, Pir Klep Suzuki Shogun, knalpot AHRS dimodif ulang, kampas kopling Honda Grand, pir kopling Yamaha RX-King.

diposting oleh ariefdanisa @ 02.35   0 Komentar

EFISIENSI MESIN


Efisiensi mesin diukur dari seberapa efisien mesin mampu menahan panas, seberapa kemampuan mesin menghisap volume campuran udara-bahan bakar, seberapa efisien mesin mampu menggerakkan semua komponen dengan gesekan minimum, dan banyak nilai-nilai efisiensi kerja lainnya untuk peningkatan performa.
Geometri bentuk, ukuran, volume sebuah porting harus menjadi catatan harian utama bagi seorang engine tuner, hingga suatu saat nantinya menemukan sebuah bentuk porting yang pas bagi dirinya sendiri. Porting mesin pabrikan dibuat untuk kepuasan power pada putaran menengah, pemakaian bahan bakar yang ekonomis, kehandalan penggunaan mesin serta daya tahan untuk jangka waktu panjang selama dalam perawatan servis.
Performa ideal adalah usaha mendekati kesempurnaan mesin dalam menghasilkan tenaga sesuai dengan pemasukan dan bagaimana mesin mengolah bahan bakar tanpa kehilangan daya pada gesekan maupun koefisien lain. Jumlah Flow dalam mesin biasa diukur dengan satuan CFM, dan setiap ketinggian tertentu dari lift klep inlet akan menghasilkan rata-rata flow yang berbeda. Airflow yang meningkat menandakan perbaikan potensi tenaga yang sebenarnya mampu dihasilkan mesin. Panjang porting dan ukuran klep juga sangat mempengaruhi Flow. Payung klep dengan diameter relatif besar, batang klep kecil, cenderung berpotensi menghasilkan flow lebih baik dibandingkan klep dengan diameter payung kecil dan batang klep lebar, disamping hal ini akan menghasilkan gesekan yang lebih besar pula dikarenakan berat massa material klep itu sendiri serta beban dinamis bagi spring valve. Namun perlu diingat, ukuran diameter klep terbatas oleh luasan permukaan piston, piston kecil akan menghalangi klep besar untuk menghasilkan flow terbaik dikarenakan ada sisi yang terhalang.
Mungkin flow ideal tidak akan dapat tercapai namun hal ini menjadi semangat untuk menemukan bentuk porting yang paling efisien. Titik penting dari sebuah porting adalah dibawah seating klep, di samping area bos klep dimana banyak flow tertahan disana. Sudut seating klep yang membulat akan mampu membantu mengurangi kehilangan air flow. Area disekitaran payung klep pada ruang bakar harus dibuat serendah mungkin agar tidak menghalangi aliran udara yang akan menyebar ke dalam silinder, karena aliran udara harus berbelok 90 derajat untuk dapat keluar dari area port dan menembus klep.

Area penting pada porting
Source of flow loss (%) Persentasi Kehilangan Flow
1. Gesekan di dinding port 4 %
2. Tegangan aliran di perut port 2 %
3. Lekukan di dekat bos klep 11 %
4. Sisi tersembunyi dibalik bos klep 4 %
5. Lekukan untuk keluar 12 %
6. Seating 25derajat 19 %
7. Seating 30 degrees 17 %
8. Ekspansi disekitar klep 31 %
Total 100 %
Pada jalur pemasukan cylinder head 4-Tak, bentuk porting ideal menurut mesin Flowbench adalah yang membulat tanpa hambatan untuk sanggup menggiring udara jatuh dengan sudut kelokan radius yang lembut melewati klep. Pada percobaan tersebut intake valve lift terbuka 10.6 mm, lebih dari ukuran standard yang membuka 7.0 mm. Maximum exhaust lift dicoba 9.71mm dari standardnya 7.0mm. Air flow di mesin sepenuhnya dikontrol oleh valve lift. Semakin jauh klep mampu dibuka, semakin besar Flow meningkat. Ketika klep terangkat 15 % dari lebar diameter payungnya maka flow dikontrol sepenuhnya oleh klep dan sudut seating klep. Saat klep terangkat tinggi, Flow akan memuncak dan akhirnya mencapai batas maksimum volume porting. Apapun di sekitaran klep yang menghalangi saat dia terangkat akan memberi hambatan berarti bagi flow. Jika volume porting mampu mengisi silinder saat klep terangkat jauh maka bukan tidak mungkin sebuah camshaft didesain untuk mengangkat klep bahkan hingga 37 % dari diameter klep. Tujuan semua ini adalah untuk membuat klep terbuka secepat mungkin dan bertahan lama di angkatan rendah dengan stabil, ini berguna untuk menambah suplai head flow. Extra flow diperoleh dari durasi pada area Flanks pada camshaft bukan pada Puncak Lift.

Eksperiment menunjukkan maksimum flow justru terjadi pada angkatan klep setinggi 27 % dari diameter klep, karena kemampuan porting untuk melepaskan udara juga terbatas, jadi seberapa lama kita mampu menjaga klep terbuka di area itulah yang mampu meningkatkan potensial airflow untuk menghasilkan tenaga. Puncak lift yang tinggi membantu untuk memberi gelombang kejut aliran udara ke dalam silinder sehingga membentuk pulsa untuk hisapan selanjutnya. Saluran hisap lebih penting diperhatikan sebagaimana ruang bakar. Area pada radius 45 derajat dari klep saat berada di maximum lift harus terbebas dari halangan sejauh 65 % dari maximum lift. Area ini adalah area ekspansi pelepasan udara dari dalam porting menyusup keluar dari payung klep gelombang kompresi negatif menjadi tidak efektif apabila air flow masih terhalang dinding di sekitar klep.

diposting oleh ariefdanisa @ 02.31   2 Komentar